Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 52, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184723

RESUMO

Patients with idiopathic pulmonary fibrosis show a strongly upregulated expression of chemokine CXCL14, whose target is still unknown. Screening of CXCL14 in a panel of human G protein-coupled receptors (GPCRs) revealed its potent and selective activation of the orphan MAS-related GPCR X2 (MRGPRX2). This receptor is expressed on mast cells and - like CXCL14 - upregulated in bronchial inflammation. CXCL14 induces robust activation of MRGPRX2 and its putative mouse ortholog MRGPRB2 in G protein-dependent and ß-arrestin recruitment assays that is blocked by a selective MRGPRX2/B2 antagonist. Truncation combined with mutagenesis and computational studies identified the pharmacophoric sequence of CXCL14 and its presumed interaction with the receptor. Intriguingly, C-terminal domain sequences of CXCL14 consisting of 4 to 11 amino acids display similar or increased potency and efficacy compared to the full CXCL14 sequence (77 amino acids). These results provide a rational basis for the future development of potential idiopathic pulmonary fibrosis therapies.


Assuntos
Quimiocinas , Fibrose Pulmonar Idiopática , Animais , Humanos , Camundongos , Aminoácidos , Bioensaio , Quimiocinas CXC , Fibrose Pulmonar Idiopática/genética , Proteínas do Tecido Nervoso/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropeptídeos
2.
J Med Chem ; 66(23): 15674-15698, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37967029

RESUMO

The MAS-related Gq protein-coupled receptor X4 (MRGPRX4) is poorly investigated. MRGPRX4 has been proposed to be involved in pain transmission, itch, inflammation, wound healing, and cancer. However, so far only a few moderately potent, nonselective MRGPRX4 agonists have been described, most of which appear to preferably activate the minor receptor variant MRGPRX4-83L but not the main variant 83S. In the present study, we discovered a xanthine derivative bearing a phosphate substituent that activates the main variant of MRGPRX4. Optimization resulted in analogs with high potency and metabolic stability. The best compounds of the present series include 8-(m-methoxyphenethyl)-1-propargylxanthine substituted with a butyl linker in the 3-position containing a terminal phosphonate (30d, PSB-22034, EC50 Ca2+ assay/ß-arrestin assay, 11.2 nM/32.0 nM) and its N7-methyl derivative 31d (PSB-22040, EC50, 19.2/30.0 nM) showing high selectivity versus all other MRGPRX subtypes. They present promising tool compounds for exploring the potential of MRGPRX4 as a future drug target.


Assuntos
Receptores Acoplados a Proteínas G , Xantinas , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Prurido
3.
Pharmacol Ther ; 238: 108259, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35934214

RESUMO

MAS-related G protein-coupled receptors (GPCRs) of subfamily X, designated MRGPRX, are primate-specific orphan receptors that belong to the δ-branch of rhodopsin-like, class A GPCRs. Four distinct subtypes exist, MRGPRX1, -2, -3, and -4, MRGPRX2 having the lowest degree of similarity with the others. Due to their expression on sensory neurons and immune cells, and their roles in pain perception and transmission, itch, inflammation, immune defense, pseudo-allergic reactions, wound healing, and possibly cancer, they have recently attracted much attention as novel drug targets. In particular MRGPRX2 was identified as an important mast cell receptor, responsible for anaphylactoid drug reactions and involved in skin and mucosal diseases, e.g. urticaria, atopic dermatitis, rosacea, and allergic rhinitis. A major hurdle has been the lack of animal models for studying these primate-specific receptors. However, recently humanized mice have been created. Moreover, a mouse ortholog of MRGPRX2, MRGPRB2, was identified, both receptors having a certain degree of similarity. MRGPRX1 and -2 can be activated by various peptides and small (partly peptidomimetic) molecules. MRGPRX2 is additionally activated by a very broad range of basic molecules, positively charged at physiologic pH value of 7.4, including many drugs. MRGPRX4 is activated by small acidic molecules including bile acids. For MRGPRX3, no ligands have been reported yet. Antagonists with reasonable potency and selectivity have been described for MRGPRX1, and few antagonists also for MRGPRX2, but not for the other subtypes. The recent elucidation of cryogenic electron microscopy structures of MRGPRX2 and -4 is expected to facilitate and advance drug development for these receptors. Currently, research on MRGPRX is still in its infancy, and exciting discoveries can be awaited. These receptors have great potential as future drug targets.


Assuntos
Anafilaxia , Peptidomiméticos , Anafilaxia/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Humanos , Mastócitos/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/metabolismo , Peptidomiméticos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos , Rodopsina/metabolismo
4.
Angew Chem Int Ed Engl ; 60(18): 10423-10429, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33655614

RESUMO

The main protease of SARS-CoV-2 (Mpro ), the causative agent of COVID-19, constitutes a significant drug target. A new fluorogenic substrate was kinetically compared to an internally quenched fluorescent peptide and shown to be ideally suitable for high throughput screening with recombinantly expressed Mpro . Two classes of protease inhibitors, azanitriles and pyridyl esters, were identified, optimized and subjected to in-depth biochemical characterization. Tailored peptides equipped with the unique azanitrile warhead exhibited concomitant inhibition of Mpro and cathepsin L, a protease relevant for viral cell entry. Pyridyl indole esters were analyzed by a positional scanning. Our focused approach towards Mpro inhibitors proved to be superior to virtual screening. With two irreversible inhibitors, azanitrile 8 (kinac /Ki =37 500 m-1 s-1 , Ki =24.0 nm) and pyridyl ester 17 (kinac /Ki =29 100 m-1 s-1 , Ki =10.0 nm), promising drug candidates for further development have been discovered.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Nitrilas/farmacologia , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Antivirais/química , COVID-19/metabolismo , COVID-19/virologia , Proteases 3C de Coronavírus/metabolismo , Desenho de Fármacos , Descoberta de Drogas , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Simulação de Acoplamento Molecular , Nitrilas/química , Inibidores de Proteases/química , Piridinas/química , Piridinas/farmacologia , SARS-CoV-2/enzimologia , SARS-CoV-2/fisiologia , Internalização do Vírus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...